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Fractal structure in optical spectra of Fibonacci superlattices 
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t D e p m e n t  of Solid State Physics, Faculty of Science, Masaryk University Kotlafski 2, 
61 137 Bmo, Czech Republic 
$ Paul-Dmddnstitut fiir Kestk&perelekmnik, Hausvogteiplatz 5-7, 1086 Berlin, Germany 

Received 21 December 1993 . 

Absttact. We present the results of theoretical and experimental studies of GaAdGaAIAs 
Fibonacci superlattices. The normal-incidence reflectance was measured for a Fibonacci 
superlanice in the tempmure range from 20 to 300 K. We develop a simple model to predict the 
reflectance theoretidy. The energy levels are calculated with the help of the envelope-function 
approximation and the Kohmot+Kadanoff-Tang renormalization-group method. The model 
predictions are in good agreement with the experiment. The electronic Structure of Fibonacci 
superlattices exhibits multihctal properties, which manifest themselves also in the experimental 
reflectance spectra. 

1. Introduction 

There is much current interest in quasicrystals, i.e., solids intermediate between completely 
periodic crystals and random or disordered amorphous solids [l]. The linear lattices 
constructed recursively as follows: Sj+j = {,SjSj-,} for j > 0, with So = ( B ]  and 
SI = ( A ) ,  are called Fibonacci lattices (FLs). They represent a simple type of one- 
dimensional quasicrystal. For this reason they have been subject of intensive theoretical 
studies. The electronic structure of Ks is usually studied in the frame of a tight-binding 
model with arbitrary on-site energies corresponding to the sites A and B and arbitrary 
hopping-matrix elements between  the^ sites A-A and A-B (see, e.g., [Z] and references 
therein). The energy spectrum of an infinite R. is singularly continuous with zero Lebesque 
measure: the set of energy gaps is a dense set and there is no isolated energy level.. The 
wave functions are critical in the sense that they are neither extended nor localized [Z]. 

Molecular-beam epitaxy opens a possibility to prepare~ms artificially. These so called 
Fibonacci superlattices (FSLS) consist of two, layers A and B alternating according to the 
Fibonacci rule. The layers A and B are usually composed of several monolayers (d) of 
GaAs and Gal,Al,As. FSLs were grown for. the first time by Merlin and co-workers in 
1985 [3]; this was followed by a fairly high activity in this field [4]. 

The optical properties of GaAs/GaAlAs FSLs in the near infrared were studied by means 
of ellipsometry [S, 61 and by means of photoluminescence excitation (PLE) spectroscopy 
[7,8]. The results were interpreted qualitatively in terms of the (single band) envelope- 
function approximation (EFA) [9] which is known to be quite successful in the case of 
periodic GaAs/GaAlAs superlattices. The hybridization effects in F S U  studied recently by 
Hirose era[ [lo] with the help of the semi-empirical sp3S* tight-binding method [ l l ]  do not 
influence significantly the electronic structure in the region close to the fundamental gap. 

Garriga and co-workers [5,6] calculated the interband continuum in the imaginary p a  
of the dielectric function and suggested a correspondence between the steps in the 

0953-8964/94n241007t12$19.50 @ 1994 IOP Publishing Ltd 4107 

-~ 

~ 



4108 D Munzar et a1 

theoretical lineshapes and the peaks observed in the ellipsometric spectra. Laruelle and 
Etienne [7] compared the positions of the structures of the PLE spectra with the calculated 
values of the transition energies and Yamaguchi et al [SI compared their PLE spectra with 
the calculated density of states corresponding to the conduction-band electrons. The partial 
agreement between the experimental results and the theoretical predictions in the quoted 
works concerns only the energies of the most pronounced spectral structures. 

In this paper we report the analysis of the normal-incidence reflectance spectra of a 
GaAslGaAlAs FSL in the temperature range from 20 to 300 K. The spectra are interpreted 
by comparing with the calculated reflectance. We aim at comparing not only the positions 
but also the shapes of the spectral structures. As far as we know it is the first time that the 
reflectance of an FSL in the region containing the onset of the interband absorption has been 
calculated. The multifractal structure of the electron energy spectrum is also drawn in the 
hierarchical form of the reflectance spectrum. 

The paper is organized as follows. Section 2 contains a brief description of the sample 
and the experimental set-up. The method of calculation of the energy levels and the wave 
functions of electrons and holes in FSLS is presented in subsection 3.1. We have used the 
EFA and the Kohmotc-Kadanoff-Tang renormalization-group method [12]. The calculation 
of the dielectric function and the reflectance is described in subsection 3.2. A detailed 
comparison of the measured and calculated lineshapes is given in section 4. 

2. Experiment 

The FSL sample was grown by molecular-beam epitaxy on a (100) semi-insulating GaAs 
substrate. The nominal composition of the building blocks A and B was 6 mL of GaAs and 
4 mL of Gq.65Alo.35As alloy, respectively. 

The growth was stopped after finishing the 12th step of the recursive rule. The target 
thickness of the FSL film is 347 nm; the actual value measured ellipsometrically is (326 
i 13) nm. The measured refractive index at 633 nm, 3.787 f 0.011, is somewhat higher 
than the value of 3.773 calculated within the effective-medium approximation [I31 for the 
FSL with the nominal composition of the building blocks. This indicates that the portion of 
GaAs in the sample is higher (the refractive index of GaAs is higher than that of the alloy). 
We conclude that the deficiency observed in the total number of monolayers is due to the 
fact that the mean thickness of the barrier B LZ 3 mL. 

Reflectance spectra at near-normal incidence were measured, point by point, with photon 
energies between 1.4 eV and 1.8 eV in the temperature range from 20 to 300 K. A stable 
150 W tungsten lamp was used to produce monochromatic light. The ratio of signals after 
reflection on the sample and a single-crystal silicon slice was multiplied by the known 
reflectance of silicon [141 to  obtain^ the reflectivity of the sample on an absolute scale. 
We estimate the absolute accuracy and the mean noise level to be about 0.01 to 0.0003, 
respectively. 

3. Theory 

3.1. Electronic structure 

In this section we present the method of calculation of the kl = 0 energy levels and wave 
functions of electrons and heavy and light holes in FSLs. Our description concerns the FSLS 
with A = (GaAs), and B = (Gal,Al,As), but the approach can be easily modified for 
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FSLS with another choice of building blocks. The most important results will be shown for 
the FSL with A = (GaAs)6 and B = ( G % ~ ~ A I O . ~ ~ A S ) ~ .  The values of the parameters entering 
the calculation used in this case are given in table 1. 

Within the EFA 191 the wave function of an electron in an FSL has the following form: 

*lr) = f i , i ( T k o ( r )  

where fi,i(r) is the envelope function varying slowly over the unit cells and uro(r) is the 
Bloch function corresponding to the r point in the Brillouin zone. Index I denotes the band 
from which the wave function originates; i represents the remaining quantum numbers. 

For the k~ = 0 conduction band states, we have @(r) = f ( z ) u ( r ) ,  where z is the 
coordinate perpendicular to the layers of the FSL and u(r) is the Bloch function at r. The 
function f(z) and the corresponding energy eigenvalue E obey the stationary Schrtidinger 
equation: 

Here mo is the free-electron mass and m(z) is the electron effective mass in units of mo, 

mA for z E A 
me for z E B 

m(z) = 

V(z) is the step potential, 

for z E A 
for z E B . vc V(z) = 

V, is the conduction band offset between Gal,AI,As and GaAs. The model potential at 
the beginning of the FSL (sequence ABAABABAABAAB) is shown in the upper part of 
figure 1. 

The boundary conditions for equation (1) at the A-B and B-A interfaces are such that 

~ ~ 

are both continuous. 

the transfer matrices will be briefly described. 
We have solved equation (1) using the common transfer-matrix technique. The form of 

Let us denote the z-coordinate of the nth interface by z,:In the layer A situated between 
~ zn and zn+], the envelope function can be written in two different ways: 

f(z) = CI cos[k(z - z.)] +SI sin[k(z - z.)] 

and 

f(z) = c,cos[k(z - z ,+ l ) ]  + ~,sin[k(z - z,+I)] 

where k = ,/-. C, and S, are connected with Ci and S, through the transfer 
matrix: 
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0.08 

h .0.04 

where x = ak; a is the thickness of the layer A. Let us denote the matrix of equation (2) 
by TA. 

Let zn be the coordinate of an interface between layers A and B. For the layer A situated 
between zn-l and zn, we can write 

f(z) = CI cos[+ - z.)] + S I  sin[+ - zn)]. 

For the next layer A situated between zn+l and zn+2, we can write 

f ( z )  = C, cos[k(z - zn+l)] + S, sin[k(z - z.+,)]. 
~ ~ The boundary conditions yield 

) (2) (3) 
cosh(y) xbmB Sinh(Y)/(YamA) (::) = ( yamA sinh(y)/(xbme) c o s W  

where y = J2momB(Vc - E) /hz ;  b is the thickness of the layer B. Let us denote the matrix 
of equation (3) by Tg. 

The coefficients C, and S, representing the wave function at the end of the sequence 
S,, (FSL of the order n) can be calculated from the coeecients C1 and SI representing-it at 
the beginning of the EL: 

( ::) = TATB . . . TATBTA (2)-.(2) 
where the arrangement of the transfer matrices in T, is reversed with respect to that of the 
layers A and B in-$e EL. 



4112 D Munzar et a1 

h -  

2 
v 
W 

I 
I '  

0.07 4 
3 4 6 7 

n 

,0.9 

01 

Figure 2. Energy bands of electrons in the periodic 
approximation (S& to the infinite FSL G a function of 
the Fibonacci order n .  

Figure 3. f-a curve for the electron energy spectrum 
of the infinite FSL. 

The eigenvalue problem (1) has to be completed by proper boundary conditions. First, 
let us consider the hypothetical case of the infinite FSL (S,). S, can be approximated by 
periodic sequences of the layers S., denoted by (S&. The higher the order n the better 
the approximation to the infinite FSL obtained. The wave function at the beginning of any 
layer S,, in (Sa), can differ from the wave function at the end of it only by a phase factor: 

By inserting this condition in equation (4) we obtain 

Tr(T,) =2cos@). (6) 

The last equation determines the energy spectrum (note that the elements of T. depend 
on energy). For the allowed energies, ITr(T,)[ < 2. Because of the quasiperiodicity we 
need not to multiply all the matrices involved in T. when solving equation (6). Let us 
define x, = Tr(Tn)/2. The x, obey the recursive rule [12]: 

x.+3 = 2x,+Z~tZx.+l - xn (7) 

which allows us to calculate TrT") starting from xa, X I .  and xz. 
The energy bands of electrons in the periodic approximations (Sd),, (S&. (S&, and 

(&), to S, are shown in figure 2. We have analysed the scaling properties of the energy 
spectrum of S, in the same way as was done in [2]. Let E be in the energy spectrum. The 
spectrum is said to have a scaling at E with a scaling index (Y if the integrated density of 
states D behaves as 

D(E + A E )  - D ( E )  - (AE)' a~ A E  -+ 0. 

The fractal dimension f of the set of energies with a given (Y as a function of 01 [15] is 
shown in figure 3. The maximum of f(u) is the fractal dimension of the energy spectrum. 
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We have calculated also the energy levels in the case of the finite FSL S12 using the 
cyclic boundary conditions, @ = 0 in equation (5): The eigenfunctions can be readily 
calculated using the transfer matrices of equation (2) and equation (3) throughout the,stack 
of the layers. The wave function of the ground state of electrons in the FSL $2 is shown 
in the lower part of figure 1. Note the self-similarity of the wave. 

The energy eigenvalues and the wave functions of heavy and light holes in the ki = 0 
case were calculated in the same manner. We replaced V, in equation (1) by the negatively 
taken valenceband offset between Gal-,AlxAs and GaAs V, and the electron effective 
masses by the corresponding hole effective masses. 

3.2. Optical properties 

The optical properties of the FSLs are treated using the formalism common in the cases of 
simple quantum wells and periodic superlattices summarized in [9]. The energy eigenvalues 
of electrons, heavy holes. and,light holes and the corresponding envelope wave functions 
are denoted by [Eei.ilr ( E ~ . i l ,  IE~h.il. and {fl,i}. b%h.i). ( f t . ib respectively; i is the index 
variable. 

First we present the formulas for the imaginary part EZ(E) of the dielectric function 
at the photon energy~E. It can be decomposed into two parts: the ,contribution of the 
continuum EZC(E)  and the conhibution of the discrete exciton states E Z ~ ~ ~ ( E )  

4 E )  = Ezc(E) + &xdE). 

The former can be calculated analytically using the assumptions of EFA and assuming 
further that the selection rules 

are valid 

where Q = ezP2(2mid). P = -i(Slp,IX) is the matrix element between the valence 
band p state at r and the conduction hand s state at r for GaAs; d is the FSL thickness; 
pel.fi and pLsl.lh are reduced ‘in plane’ effective masses of the electron-heavy-hole and 
electron-light-hole pairs in GaAs, respectively; E, is the energy gap of GaAs. @ ( x )  is 
the Step function. The values of /lel.hh and p d ~ ,  listed in table 1 were calculated using 
the formulas for the ‘in plane’ hole effective masses: 1 /mhh,l = yl + yz + P2/(moEg),  
l /mih , i  = y~ - yz + P2/(3moE,), with the values of the Luttinger parameters y1 and 
taken from [16]. In order to avoid the shape edges in the spectra, the step function in 

- 

equation (9) was replaced by the error function 1 _  

resulting from the Gaussian broadening with a phenomenological width y .  The contribution 
of discrete exciton states can be calculated analytically on the assumptions given above only 
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in the two-dimensional (2D) model 1171. In that case 

&l.hhRue.hh C J ( E  - Eg -E&i - Ehh,i + Rexc.hh) 

Here Rex+ = ~el , ]he4/(8XZ€ZfiZ)  and Rexc,lh = pei,lhe4/(87C2EZ?i2) are heavy- and light- 
hole 2~ exciton rydbergs, respectively, and only the lowest discrete exciton states are 
taken into account. In the case of the FSL, the exciton states are far from 2D because 
of considerable coupling between the states centred in different wells. For this reason, and 
in order to describe phenomenologically the broadening of the excitonic lines, we have 
modified equation (10) in the following way: 

Eexc.hh and Euc.lh are heavy- and light-hole exciton binding energies, respectively. The 
ratios BEeuc,hh/Rcxc.hh and BEexc.lh/&rc.lh express the changes of the oscillator strengths 
of the excitonic transitions with respect to the 2D case. The values of Eue.bh and Ecrc.lh 
listed in table 1 are chosen according to [181, [19], and 1201. Our choice of B is based on 
the assumption that the oscillator strengths are the same as in the 2D case. We suppose the 
phenomenological broadening U to increase with increasing energy separation between the 
excitonic line and the FSL gap, Eg(FSL): U = uo[l + C ( E  - Eg(FSL)]. 

The calculation of the reflectance requires also the knowledge of the real part of the 
complex dielectric function € , ( E ) .  This can be obtained by means of Krmers-Kronig 
transformation: 

Formulas (9)  and (1 1 )  are suitable only for energies close to the FSL gap. 62(E) in the more 
distant region containing the El and E2 interband transitions is not known. We approximate 
it in that region by a Lorentzian line: 

The values of the parameters F ,  r and EO presented in table 1 are chosen so that firstly, 
the Kramers-Kronig transform of (13) reproduces the experimental [21] values of the real 
part of the permittivity of an alloy with the same portion of AI as involved in the FSL in the 
energy region around 1.96 eV, and secondly, the calculated E ~ ( E )  matches (13) at 1.769 eV. 
The integration in equation (12) can be carried out numerically and the model reflectance 
of the FSL grown on a GaAs substrate can be calculated from the optical constants using the 
formula for the normal-incidence reflectance of a system consisting of a layer on a substrate. 
Optical constants of GaAs were taken from [14].  

The calculated imaginary and real parts of the dielectric function are shown in figure 4. 
The calculated reflectance is shown in figure 5 ,  together with the experimental result. 
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Figure 4. Imaginary part 82 of the dielectric function (solid line) and the real p a  81 of 
the dielectric function with the h e m - K r o n i g  transform els of the background Lorenaian 
subtracted (dashed line) for the FSL S12: 

r 
0.335 ~1 
0.305 

1.6C 1.65 1.70 1. 5 
E(eV) 

Fwre 5. Calculated reflectance specmm of the FSL St2 (solid line) and the measured low- 
temperatum~(20 K) reflectance specmm (dashed line). The s t~c tu res  present in the measured 
spectrum are labelled in accordance with the labelling of the peaks in the calculated reflectance 
spectrum: the correspondence is suggested. Inset: temperature evolution of the spectra. The 
spectra at 37 K. 86 K and 298 K are arbitrarily shifted. 
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4. Discussion 

The shapes of the spectral structures in the reflectance can be understood in the way 
described in [13]. The change of the reflectance due to a small change of the dielectric 
function he = A61 + ihsz is given by the following formula: 

Here n and k are refractive and extinction indices of the layer, respectively; k << n in the 
energy interval of interest. The derivatives of R calculated for a model system consisting of 
a non-absorbing layer with the index of refraction n(E) = a on the GaAs substrate 
are shown in figure 6, where E ~ B ( E )  is the Kramers-Kronig transform of (13). The arrow 
labelled by LT shows the low-temperature position of the lowest excitonic transition. Close 
to the gap the derivative dB/dk is small and the reflectance is approximately proportional 
to -(e1 - G I B )  from figure 4. At higher energies the derivative dR/dk increases and the 
first term in equation (14) dominates the reflectance spectrum, which displays the series of 
peaks in €2 from figure 4. 

-" I dR/dn 1 

Figure 6. The derivatives of the reflectance R for a model system consisting of a non-absorbing 
layer of thickness d = 326 nm with the index of refraction n(E) = -grown on a G U S  
substrate with respect to the index of refraction n and the index of extinction k of the layer. 
m ( E )  is the Kramers-Kronig transform of the background Lorenmian. The arrows labelled 
by LT and RT show the low-tempmture and room-temperature positions of the lowest excitonic 
transition, respectively. 

The reflectance spectrum consists of three groups of peaks: E (El, Ez), F (FI, Fz, Fj), 
and G (GI, Gz, (33). This is connected with the multif3actal electron energy spectrum (cf. 
the energy bands of (ST)- in figure 2). The FSL contains single wells BAB and double 
wells BAAB. The groups E and G correspond to bonding and antibonding combinations of 
states located in neighbouring double wells, respectively. The group F corresponds to states 
located mainly in isolated double wells. These are separated from the other double wells by 
single wells. The peaks are predominantly due to heavy-hole excitons with the exception 
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Table 2. Energies in meV corresponding to the mows in figure 5 relative to the experimental 
position of El = 1627 meV. 

El E2 FI F2 F3 GI 0 2  G3 . .  
Theory -11 0 21 36 51 68 .  93 112 
l%eory+ 11 meV ~0 11 32 47 62 79 104 123 
Exwerimem 0 11 27 42 63 85 113 - 

of F3 which is of light-hole origin. The energy positions of the arrows in figure 5 are given 
in table 2. 

The calculated reflectance is about 1% higher than the measured one. This could be due 
to the experimental inaccuracy and/or to the approximations of the background dielectric 
function. 

Nearly all the features seen in the measured spectrum can be assigned to the computed 
structures. The onset of the superlattice absorption (the peak denoted by El and the 
preceding dip) is shifted by about 11 meV towards lower energies in the calculated spectrum. 
This shift might have the following explanation. The EFA is based on the~assumption that 
the envelope functions vary slowly at the scale of the lattice parameter. This is not justified 
in our case: the envelope functions do vary dramatically inside each barrier and the barrier 
thickness is only 3 mL. The interwell coupling may thus be overestimated in the EFA and the 
ground-state energy underestimated. The calculated distances between the spectral structures 
are in very good agreement with the experiment as seen fiom table 2. 

The calculation underestimates the oscillator strengths connected with the transitions 
resulting in the structures denoted by El and Ez. This may be partially due to the 
enhancement of the exciton reduced mass suggested by Masumoto et ul [23] for the 
absorption spectra of narrow quantum wells. 

The strengths connected with the transitions resulting in the structures denoted by F,, F2, 
GI and Gz are overestimated in the calculated reflectance. There are considerable differences 
between the electron and hole localizations as confirmed by the calculation of some of the 
overlap integrals (8). For example, the squared overlap between the wave functions of 
electrons and heavy holes corresponding to the centre of the spectrum is only 0.74 instead 
of unity. We suggest that the approximation (8) neglecting the transitions. between electron 
and hole states with different indices is one of the reasons for the overestimation quoted 
above. The other reason may be that the correspondinsexciton states'are less localized and 
consequently the oscillator strengths are smaller 1231. 

The temperature evolution of the spectra is shown in the inset of figure 5. Note that 
all the structures labelled in the low-temperature spectra can be identified also at 37 K. 
With increasing temperature the spectral structures shift towards lower energies and their 
broadening increases. The three branches E, F and G are present up to~room temperature 
but their fine structure vanishes at about 100-K. The room-temperature lineshapes can 
be understood with the help of figure 6 since the temperature shift of'the interference 
background is distinctly lower than the shift of the absorption structure. At room temperature 
the absorption edge is located at about 1520 meV (the point labelled by RT in figure 6). In 
that region the derivative dR/& is negative and, according to equation (14), a minimum 
appears in the reflectance spectrum close to the absorption edge. 

- 

~ 

5. Conclusion 

The electronic structure of FSLS was studied theoretically and by means of reflectance 
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spectroscopy. 
The calculations reveal the multifractal properties of the electron energy spectrum and 

the self-similarity of the wave function of the ground state. 
Our measured reflectance spectrum exhibits the hierarchical structure resulting from the 

branching of the energy spectrum. Three branches can be identified and each of them has 
an inner structure; 

The calculated reflectance spectrum is shifted slightly towards lower energies. The 
distances between the spectral stlllctures are in very good agreement with the experiment. 
It is interesting that the EFA yields results in quantitative agreement with the experiment 
although the barrier thickness is only 3 mL. The theory underestimates the oscillator 
strengths of the lowest excitonic transitions but those corresponding to the higher ones 
are overestimated. 
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